If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-320x+10880=0
a = 2; b = -320; c = +10880;
Δ = b2-4ac
Δ = -3202-4·2·10880
Δ = 15360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15360}=\sqrt{1024*15}=\sqrt{1024}*\sqrt{15}=32\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-320)-32\sqrt{15}}{2*2}=\frac{320-32\sqrt{15}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-320)+32\sqrt{15}}{2*2}=\frac{320+32\sqrt{15}}{4} $
| -8=(y/9) | | 4(4y+4)=48 | | 5w+8w-4=13w-12+8 | | 2(3x+5)=2x+17 | | 18t^2+6t=0 | | 6=2x-16/4 | | 2p-3=4(p+1) | | 3x-5=-8x+17 | | x/4+8-6=5 | | (2x-10)-(x-16)=8 | | -(3p-6)=7p-16+p | | 2(5x+3)+24X=55-x | | (X-15)-(7-2x)=14 | | 6+5x=3x-2 | | 5t-8-3t=17 | | 2(5p-12)=6 | | -3r+25+r+21=2 | | 4m-2m=3 | | (X-15)-(2x-7)=14 | | 4.6-(-h)=-0.4 | | -1/4+y=-2/5 | | -14=2(y+8)-5y | | -5(m+2)+7m-1=-9 | | 3x+14=7-4x | | 3/4-5=-1+1/4y | | |4x+3|=9+2x | | X+7=(6x+) | | (X-6)-(2x-13)=8 | | 3x-45=156 | | 7x-9=x+9 | | (3x)^2+(2x)^2=52 | | f−9/8=9/5 |